HYDRaTE – Distribution of HYdrogen in the protoplanetary Disk and deliveRy to the Terrestrial planEts

The HYDRaTE project started at the beginning of 2020. This project is funded by the Agence Nationale de la Recherche for 4 years (ANR JCJC: ANR-19-CE31-0027-01).
Summary of the objectives
Although hydrogen is the most abundant element of the Solar System, little is known about its distribution among planetary materials. In particular, the question of the origin of hydrogen -and thus water- on Earth, Mars or the Moon remains highly debated. The HYDRaTE project proposes to use primitive meteorites, chondrites, as witnesses for the building blocks of planets to bring clues on the hydrogen distribution in the protoplanetary disk materials. Using state-of-the-art instruments, such as the secondary ion mass spectrometers IMS-1280 at CRPG, and experimental simulations, HYDRaTE aims at quantifying the hydrogen distribution and isotopic composition among the large range of H-bearing chondritic phases (hydrated minerals, organics and chondrule silicates). Such a global and systematic characterization will be used to model the contributions of chondritic materials to the budget of volatile elements of Earth and other terrestrial planets.
Main collaborators
Nathalie Bolfan-Casanova (LMV), Nordine Bouden (CRPG), Camille Cartier (CRPG), Jean Duprat (CSNSM-MNHN), Andrey Gurenko (CRPG), Emmanuel Jacquet (IMPMC-MNHN), Delphine Lequin (CRPG), Yves Marrocchi (CRPG), Bernard Marty (CRPG), Laurent Michot (Phenix-UPMC), Thomas Rigaudier (CRPG), Laurent Tissandier (CRPG), Johan Villeneuve (CRPG), Helen Grant (The University of Manchester, UK), Romain Tartèse (The University of Manchester, UK), Dorian Thomassin (CRPG)
Main results
– We have determined the water D/H ratio in different types of carbonaceous chondrites (CM, CI, CO, CR, ungrouped) using a method recently developed on SIMS (Piani et al. 2018, Nat. Astro). We show that the D/H variations of water and organics in the different chondrite types are not the result of parent body processes and we propose a model to explain this distribution in the disk at the time and place of the chondrite parent formation. This work has been published in Earth and Planetary Science Letters in May 2021 (Piani et al., EPSL 2021).
– The “D/H vs. C/H” method has also been applied to other chondritic samples to determine the isotopic composition of hydrogen carriers in these objects: grains of the carbonaceous asteroid Ryugu brought back by the JAXA Hayabusa2 space mission, whose water has an isotopic composition close to that of CI-type carbonaceous chondrites (Piani et al., ApJ 2023), ordinary chondrites showing extreme D/H isotopic variations (Grant et al., GCA 2024) and, during 2024, on grains from the asteroid Bennu brought back by NASA’s OSIRIS-REx space mission (Piani et al., MetSoc meeting 2024).
– Enstatite chondrites are considered to be good analogues of the rocks that mostly formed the Earth. One of the first tasks of the HYDRaTE project was to analyze the content and isotopic composition of hydrogen in a dozen total rock enstatite chondrites, then to locate one of the hydrogen-bearing phases using in situ ion probe analysis. The results show that these meteorites could have contributed at least three times the total amount of hydrogen present in the water of the Earth’s oceans (Piani et al., Science 2020). The hydrogen isotopic composition of enstatite chondrites is in perfect agreement with that of the water stored in the Earth’s primitive mantle. We also show that a large proportion of atmospheric nitrogen could also originate from enstatite chondrites, making these rocks, analogues of the Earth’s main constituents, suppliers of the elements fundamental to the development of life on Earth (Piani et al., Science 2020). Further analyses were carried out as part of Dorian Thomassin’s PhD thesis, showing a link between hydrogen and sulfur in these chondrites and indicating the influence of sulfur-rich gases in the chondrite-forming environment of enstatite chondrites (Thomassin et al., EPSL 2024).
– This work has also led the researchers involved in HYDRaTE to participate in several review articles related to the project’s themes (Izidoro & Piani, Elements 2022; Broadley et al., Nature review 2022; Krot et al., Sp. Sc. Rev. 2025).
Publications
1. Vacher L.G., Piani L., Rigaudier T., Thomassin D., Florin G., Piralla M., Marrocchi Y. (2020). Hydrogen in chondrites: Influence of parent body alteration and atmospheric contamination on primordial components. Geochimica et Cosmochimica Acta 281, 53-66. DOI: 10.1016/j.gca.2020.05.007
2. Piani L., Marrocchi Y. , Rigaudier T. , Vacher L.G. , Thomassin D., Marty B. (2020) Earth’s water may have been inherited from material similar to enstatite chondrite meteorites. Science, Vol. 369, Issue 6507, pp. 1110-1113. DOI: 10.1126/science.aba1948
3. Piani L., Marrocchi Y., Vacher L. G., Yurimoto H., Bizzarro M. (2021) Origin of hydrogen isotopic variations in chondritic water and organics. Earth and Planetary Science Letters, Vol. 567, 117008. DOI: doi.org/10.1016/j.epsl.2021.117008
4. Hewins R.H., Zanetta P.-M., Zanda B., Le Guillou C., Gattacceca J., Sognzoni C., Pont S., Piani L., Rigaudier T., Leroux H., Brunetto R., Maupin R., Djouadi Z., Bernard S., Deldicque D., Malarewicz V., Dionnet Z., Aléon-Toppani A., King A., Borondics F. (2021) NORTHWEST AFRICA (NWA) 12563 and ungrouped C2 chondrites: Alteration styles and relationships to asteroids. Geochimica et Cosmochimica Acta, Vol. 311, 238-273. DOI: 10.1016/j.gca.2021.06.035
5. Broadley M.W., Bekaert D.V., Piani L., Füri E., Marty B. (2022). Origin of life-forming volatile elements in the inner Solar System. Nature 611, 245–255. DOI: 10.1038/s41586-022-05276-x
6. Izidoro A., Piani L. (2022) Origin of Water in the Terrestrial Planets: Insights from Meteorite Data and Planet Formation Models. Elements 2022; 18 (3): 181–186. doi: 10.2138/gselements.18.3.181
7. Marrocchi Y., Rigaudier T., Piralla M., Piani L. (2023) Hydrogen isotopic evidence for nebular pre-hydration and the limited role of parent-body processes in CM chondrites. Earth and Planetary Science Letters 611, no. 2, p. 118151, 2023. doi: 10.1016/j.epsl.2023.118151
8. Piani L., Nagashima K., Kawasaki N., Sakamoto N., Bajo K.-I., Abe Y., Aléon J., Alexander C. M. O’D., Amari S., Amelin Y., Bizzarro M., Bouvier A., Carlson R. W., Chaussidon M., Choi B.-G., Dauphas N., Davis A. M., Di Rocco T., Fujiya W., Hidaka H., Homma H., Fukai R., Gautam I., Haba M. K., Hibiya Y., Hoppe P., Huss G. R., Ichida K., Iizuka T., Itoh S., Kita N. T., Kitajima K., Kleine T., Ireland T. R., Ishikawa A., Komatani S., Krot A. N., Liu M.-C., Masuda Y., McKeegan K. D., Morita M., Motomura K., Moynier F., Nakai I., Nguyen A., Nittler L. R., Onose M., Pack A., Park C., Qin L., Russell S. S., Schönbächler M., Tafla L., Tang H., Terada K., Terada Y., Usui T., Wada S., Wadhwa M., Walker R. J., Yamashita K., Yin Q.-Z., Yokoyama T., Yoneda S., Young E. D., Yui H., Zhang A.-C., Nakamura T., Naraoka H., Okazaki R., Sakamoto K., Yabuta H., Abe M., Miyazaki A., Nakato A., Nishimura M., Okada T., Yada T., Yogata K., Nakazawa S., Saiki T., Tanaka S., Terui F., Tsuda Y., Watanabe S., Yoshikawa M., Tachibana S. and Yurimoto H. (2023) Hydrogen isotopic composition of hydrous minerals in asteroid Ryugu. Astrophys. J. Lett. 946, L43 (11pp). doi: doi.org/10.3847/2041-8213/acc393
9. Thomassin D., Piani L., Villeneuve J., Caumon MC., Bouden N., Marrocchi Y. (2023) The high-temperature origin of hydrogen in enstatite chondrite chondrules and implications for the origin of terrestrial water. Earth and Planetary Science Letters 616, 118225. doi: 10.1016/j.epsl.2023.118225
10. Grant H., Tartese R., Jones R., Piani L., Marrocchi Y., King A., Rigaudier T. (2023) Bulk mineralogy, water abundance, and hydrogen isotope composition of unequilibrated ordinary chondrites. Meteoritics and Planetary Science, 58(9): 1365-1381. doi: doi/10.1111/maps.14041
11. Grant, H., Tartèse, R., Jones, R., Piani, L., Marrocchi, Y., (2024) Identification of a primordial high D/H component in the matrix of unequilibrated ordinary chondrites, Geochimica et Cosmochimica Acta, doi: 10.1016/j.gca.2024.06.005
Communications
Meteoritical Society Meeting (MetSoc), Brussel 2024 – L. Piani, Y. Marrocchi, J. Villeneuve, J. J. Barnes, A. N. Nguyen, H. C. Connolly Jr., and D. S. Lauretta. Hydrogen Isotopic Composition of Hydrous Minerals in Particles from Bennu.
Goldschmidt conference, Lyon 2023 – Thomassin D., Piani L., Villeneuve J., Bouden N., Caumon M-C., Marrocchi Y. The high-temperature origin of hydrogen in enstatite chondrite chondrules and implications for the origin of terrestrial water.
SIMS workshop at UNIL in Lausanne – Goldschmidt 2023 – Thomassin D., Piani L., Rigaudier T., D/H composition and hydrogen content in pyroxenes: on-going developments of new reference materials Journées des utilisateurs SIMS francophones, Pau 2022 – Teneurs en H2O & CO2 dans les verres : Effets de matrice vs. Conditions analytiques.
Meteoritical Society Meeting (MetSoc), Glasgow 2022 – Thomassin D., Piani L., Marrocchi Y., Villeneuve J., Caumon M-C. Distribution of volatile elements in enstatite chondrites.
Meteoritical Society Meeting (MetSoc), Glasgow 2022 – Piani L., Marrocchi Y., Nagashima K., Kawasaki N., Sakamoto N., Bajo K., The Hayabusa2-initial-analysis chemistry team, The Hayabusa2-initial-analysis core, and Yurimoto H. Hydrogen isotopic composition of water in Ryugu samples returned by the Hayabusa 2 mission.
Colloque PNP, Lyon 2022 – Piani L., Marrocchi Y. Origine des variations isotopiques de l’hydrogène dans l’eau et la matière organique des chondrites.
Journées des utilisateurs SIMS francophones, Paris 2021 – Mesure du D/H de l’eau dans des météorites primitives par l’utilisation de droites de mélange.
Goldschmidt conference 2021 (invited talk) – Piani L., Marrocchi Y., Rigaudier T., Vacher L. G., Thomassin D., Marty M. Earth’s water may have been inherited from material similar to enstatite chondrite meteorites.