HYDRaTE

Eau dans les différentes chondrites carbonées / Water in the different carbonaceous chondrites

Piani L., Marrocchi Y., Vacher L. G., Yurimoto H., Bizzarro M. (2020) Origin of hydrogen isotopic variations in chondritic water and organics. Earth and Planetary Science Letters, Vol. 567, 117008. doi.org/10.1016/j.epsl.2021.117008

Dans ce nouveau papier paru en ligne en mai dans la revue EPSL, nous avons utilisé la méthode de mesure in situ en sonde ionique « D/H vs. C/H » (Piani et al. 2018, Nat. Astro.) pour estimer la composition isotopique de l’eau de nombreuses chondrites carbonées (CM, CI, CO, CR, ungrouped). Nous montrons que les variations D/H observées ne sont pas le résultats de processus secondaires sur le corps parent astéroïdal et proposons un modèle pour expliquer la distribution du D/H de l’eau et de la matière organique au moment de la formation de ces différentes chondrites.

In this recent paper published in EPSL, we report the in situ determination of the water D/H ratio in different types of carbonaceous chondrites (CM, CI, CO, CR, ungrouped) using a method recently developed on SIMS (Piani et al. 2018, Nat. Astro). We show that the D/H variations of water and organics in the different chondrite types are not the result of parent body processes and we propose a model to explain these distribution in the disk at the time and place of the chondrite parent formation.

D/H ratios of water in different carbonaceous chondrites: distinct and unique values are found for each chondrite type

Pourquoi y a-t-il de l’eau sur Terre ?

Pourquoi y a-t-il de l’eau sur Terre ? par Laurette Piani & Guillaume Paris, The Conversation, Oct. 2020

Un article grand public en français co-écrit avec Guillaume Paris et publié aujourd’hui (19/10/2020) sur le site français The Conversation. Cet article fait suite à la publication de notre récent papier à Science. Il est associé à un autre article des mêmes auteurs sur l’histoire de l’eau sur Terre.

Le système solaire était au départ un nuage de gaz et de poussière à partir duquel les planètes et différents corps se sont formés par agglomération des poussières. L’incorporation de l’eau dans les corps planétaires dépend de la température environnante, aux faibles pressions du milieu interplanétaire : au dessus de -120 °C, l’eau est sous forme vapeur et ne s’agglomère pas aux autres solides. Laurette Piani

La Terre pourrait avoir été riche en eau dès le départ / Earth may have always been wet

Piani L., Marrocchi Y. , Rigaudier T. , Vacher L.G. , Thomassin D., Marty B. (2020) Earth’s water may have been inherited from material similar to enstatite chondrite meteorites. Science, Vol. 369, Issue 6507, pp. 1110-1113. Full text available here.

EC-sans-fond

Morceau d’environ 10 cm de la chondrite à enstatite Sahara 97096 dans laquelle des concentrations d’eau de l’ordre de 0.5 % en poids sont mesurées. Si notre planète était formée uniquement de ce matériau, elle contiendrait jusqu’à 23 fois la quantité d’eau présente dans l’ensemble des océans. // Piece of the meteorite Sahara 97096 (about 10-cm long), an enstatite chondrite that contains about 0.5 weight % of water. If Earth formed entirely of this material, it would have received 23 times the total mass of water present in the Earth’s oceans. Sample from the National History Museum (Paris).

La Terre est la seule planète du système solaire à posséder de l’eau liquide à sa surface. Cette caractéristique est fondamentale, car cette eau a joué un rôle majeur dans l’apparition et le développement de la vie sur notre planète. Une grande question agite néanmoins la communauté scientifique : quelle est l’origine de l’eau sur Terre? En effet, les roches constitutives de la Terre sont supposées sèches car elles proviennent de zones internes du Système Solaire où régnaient des températures trop élevées pour que l’eau condense et s’agglomère aux autres solides sous forme de glace. L’hypothèse souvent évoquée est celle d’un apport tardif, après les premières étapes de formation de la Terre, par des petits corps hydratés tels que des comètes ou des astéroïdes carbonés. La quantité d’eau des roches constitutives de la Terre n’a néanmoins jamais été précisément estimée. Il existe pourtant des analogues disponibles sur Terre : ce sont les météorites du groupe des chondrites à enstatite correspondant à moins de 2% de l’ensemble des météorites.

Dans un article publié dans la revue Science, nous avons déterminé de façon précise les concentrations en eau des chondrites à enstatite. L’utilisation couplée de deux techniques analytiques, la spectrométrie de masse conventionnelle et la sonde ionique, a permis de montrer que l’on pouvait s’affranchir de la contamination terrestre et mesurer de façon fiable de faibles teneurs en eau comme celles mesurées dans les chondrites à enstatite. Les résultats obtenus montrent que les chondrites à enstatite contiennent suffisamment d’eau pour avoir apporté au minimum l’équivalent de trois fois la quantité totale d’hydrogène présent dans l’eau des océans terrestres et peut être beaucoup plus ! ! L’utilisation de rapport isotopique, véritable ADN des éléments chimiques, permet ensuite d’affiner la comparaison entre la Terre et les chondrites à enstatite. La composition isotopique en hydrogène des chondrites à enstatite est en parfait accord avec celle de l’eau stockée dans le manteau terrestre. Il apparait donc que la Terre s’est formée à partir d’un matériel suffisamment riche en hydrogène pour fournir la quasi-totalité de l’eau terrestre. Ces résultats montrent également qu’une grande partie de l’azote atmosphérique (gaz le plus abondant de l’atmosphère terrestre) pourrait aussi provenir des chondrites à enstatite, faisant de ces roches, analogues des constituants principaux de la Terre, les pourvoyeurs des éléments fondamentaux pour le développement de la vie sur Terre. La Terre a donc toujours été riche en eau et cette caractéristique est fondamentale au regard du développement de la vie sur notre planète.

**************************

Earth is the only planet of our Solar System with liquid water on its surface. This is a fundamental characteristic, as water certainly played a major role in the appearance and development of life on Earth. A great question remains though: where does this water come from? Indeed, the Earth’s building blocks are supposed to be dry, as they come from inner zones of the Solar System where temperatures have been too high for water to condense and be accreted with other solids during planet formation. It is commonly considered that water was delivered to Earth at the end of its formation by hydrated bodies such as comets or hydrated asteroids formed in the outer Solar System. Nonetheless, the water content of the Earth’s building blocks has never been precisely estimated. Yet, potential analogues of these building blocks are available on Earth: the meteorites from the enstatite chondrite group, that correspond to 2% of the known meteorites.

In this paper published in the Science review, we have determined the water concentration and composition of a series of enstatite chondrites. The coupling of two analytical techniques, the conventional mass spectrometry and the secondary ion mass spectrometry (SIMS), allowed them to precisely measure the low water contents of enstatite chondrites without being biased by terrestrial contamination. The results demonstrate that the enstatite chondrites contain enough water to deliver at the minimum 3 times the total amount of water of the Earth’s oceans and probably much more! To investigate the comparison between the Earth and the enstatite chondrites further, the authors traced water’s origin by measuring the hydrogen isotopic ratios. The isotopic ratio is a type of signature akin to DNA for a chemical element. We found the hydrogen isotopic composition of enstatite chondrites to be similar to the one of the water stored in the terrestrial mantle. It thus appears that the Earth might have been formed from a material that both contains enough water and possesses the right isotopic composition to explain almost all of the water present today. The paper also proposed that a large amount of the atmospheric nitrogen (the most abundant component of the Earth’s atmosphere) could also come from the enstatite chondrites. The Earth could thus have always been wet and this is of major importance for the development of life on our planet.

Hydrogène des chondrites : effets corps parents et contamination terrestre

Vacher L.G., Piani L., Rigaudier T., Thomassin D., Florin G., Piralla M., Marrocchi Y. (2020). Hydrogen in chondrites: Influence of parent body alteration and atmospheric contamination on primordial components. Geochimica et Cosmochimica Acta (in press).

Ce nouvel article publié dans GCA présente des mesures d’hydrogène (concentration et isotopie) mesurées en roche totale dans des chondrites carbonées et ordinaires. En comparant nos résultats à la littérature, nous discutons de l’influence des conditions de analytiques sur les mesures en hydrogène qui peuvent facilement être perturbées par la contamination atmosphérique ainsi que des modifications qui ont pu avoir lieu sur le corps parent astéroïdal.

Fig4_web

 

Lancement de HYDRaTE en février / HYDRaTE started on February

logo-hydrate.004

Le 3 février dernier a eu lieu la réunion de lancement du projet HYDRaTE. Ce projet est financé par l’Agence Nationale de la Recherche (ANR JCJC) pour une durée de 4 ans.

The kick-off meeting of the HYDRaTE project happened on February, 3rd . This project is funded by the Agence Nationale de la Recherche (ANR JCJC) for 4 years.

 

HYDRaTE – Distribution de l’HYDRogène dans le disque protoplanétaire et contribution des météorites aux budgets en volatils des planètes TElluriques (PI. Laurette Piani).

Bien que l’hydrogène soit l’élément le plus abondant du Système Solaire, sa répartition entre les solides constitutifs des matériaux planétaires reste peu connue à ce jour. En particulier, la question de l’origine de l’hydrogène -et donc de l’eau- des planètes rocheuses telles que la Terre ou Mars est toujours activement débattue. HYDRaTE se propose d’utiliser les chondrites, témoins des matériaux primitifs du Système Solaire, pour caractériser la distribution de H dans les différents solides qui ont formé les planètes. En utilisant à la fois des techniques analytiques de pointe, telles que les sondes ioniques IMS-1280 du CRPG, et des simulations expérimentales, HYDRaTE vise à quantifier l’abondance et l’isotopie de H dans les différentes phases porteuses des chondrites (minéraux hydratés, matière organique et chondres). Cette caractérisation globale permettra de modéliser la contribution des matériaux chondritiques aux budgets en volatils de la Terre et des autres planètes rocheuses.

HYDRaTE – Distribution of HYdrogen in the protoplanetary Disk and deliveRy to the Terrestrial planEts

Although hydrogen is the most abundant element of the Solar System, little is known about its distribution among planetary materials. In particular, the question of the origin of hydrogen -and thus water- on Earth, Mars or the Moon remains highly debated. The HYDRaTE project proposes to use primitive meteorites, chondrites, as witnesses for the building blocks of planets to bring clues on the hydrogen distribution in the protoplanetary disk materials. Using state-of-the-art instruments, such as the secondary ion mass spectrometers IMS-1280 at CRPG, and experimental simulations, HYDRaTE aims at quantifying the hydrogen distribution and isotopic composition among the large range of H-bearing chondritic phases (hydrated minerals, organics and chondrule silicates). Such a global and systematic characterization will be used to model the contributions of chondritic materials to the budget of volatile elements of Earth and other terrestrial planets.