Planètes

La Terre a-t-elle toujours été bleue ?

La Terre a-t-elle toujours été bleue ? par Guillaume Paris & Laurette Piani, The Conversation, Oct. 2020

Un article grand public en français co-écrit avec Guillaume Paris et publié aujourd’hui (18/10/2020) sur le site français The Conversation. Cet article fait suite à un autre article des mêmes auteurs sur l’origine de l’eau sur Terre et parle de l’histoire de l’eau et des océans et du rôle de l’eau dans les phénomènes géologiques qui ont façonnés la Terre.

Interactions entre eau, tectonique des plaques et CO₂. Guillaume Paris

Pourquoi y a-t-il de l’eau sur Terre ?

Pourquoi y a-t-il de l’eau sur Terre ? par Laurette Piani & Guillaume Paris, The Conversation, Oct. 2020

Un article grand public en français co-écrit avec Guillaume Paris et publié aujourd’hui (19/10/2020) sur le site français The Conversation. Cet article fait suite à la publication de notre récent papier à Science. Il est associé à un autre article des mêmes auteurs sur l’histoire de l’eau sur Terre.

Le système solaire était au départ un nuage de gaz et de poussière à partir duquel les planètes et différents corps se sont formés par agglomération des poussières. L’incorporation de l’eau dans les corps planétaires dépend de la température environnante, aux faibles pressions du milieu interplanétaire : au dessus de -120 °C, l’eau est sous forme vapeur et ne s’agglomère pas aux autres solides. Laurette Piani

La Terre pourrait avoir été riche en eau dès le départ / Earth may have always been wet

Piani L., Marrocchi Y. , Rigaudier T. , Vacher L.G. , Thomassin D., Marty B. (2020) Earth’s water may have been inherited from material similar to enstatite chondrite meteorites. Science, Vol. 369, Issue 6507, pp. 1110-1113. Full text available here.

EC-sans-fond

Morceau d’environ 10 cm de la chondrite à enstatite Sahara 97096 dans laquelle des concentrations d’eau de l’ordre de 0.5 % en poids sont mesurées. Si notre planète était formée uniquement de ce matériau, elle contiendrait jusqu’à 23 fois la quantité d’eau présente dans l’ensemble des océans. // Piece of the meteorite Sahara 97096 (about 10-cm long), an enstatite chondrite that contains about 0.5 weight % of water. If Earth formed entirely of this material, it would have received 23 times the total mass of water present in the Earth’s oceans. Sample from the National History Museum (Paris).

La Terre est la seule planète du système solaire à posséder de l’eau liquide à sa surface. Cette caractéristique est fondamentale, car cette eau a joué un rôle majeur dans l’apparition et le développement de la vie sur notre planète. Une grande question agite néanmoins la communauté scientifique : quelle est l’origine de l’eau sur Terre? En effet, les roches constitutives de la Terre sont supposées sèches car elles proviennent de zones internes du Système Solaire où régnaient des températures trop élevées pour que l’eau condense et s’agglomère aux autres solides sous forme de glace. L’hypothèse souvent évoquée est celle d’un apport tardif, après les premières étapes de formation de la Terre, par des petits corps hydratés tels que des comètes ou des astéroïdes carbonés. La quantité d’eau des roches constitutives de la Terre n’a néanmoins jamais été précisément estimée. Il existe pourtant des analogues disponibles sur Terre : ce sont les météorites du groupe des chondrites à enstatite correspondant à moins de 2% de l’ensemble des météorites.

Dans un article publié dans la revue Science, nous avons déterminé de façon précise les concentrations en eau des chondrites à enstatite. L’utilisation couplée de deux techniques analytiques, la spectrométrie de masse conventionnelle et la sonde ionique, a permis de montrer que l’on pouvait s’affranchir de la contamination terrestre et mesurer de façon fiable de faibles teneurs en eau comme celles mesurées dans les chondrites à enstatite. Les résultats obtenus montrent que les chondrites à enstatite contiennent suffisamment d’eau pour avoir apporté au minimum l’équivalent de trois fois la quantité totale d’hydrogène présent dans l’eau des océans terrestres et peut être beaucoup plus ! ! L’utilisation de rapport isotopique, véritable ADN des éléments chimiques, permet ensuite d’affiner la comparaison entre la Terre et les chondrites à enstatite. La composition isotopique en hydrogène des chondrites à enstatite est en parfait accord avec celle de l’eau stockée dans le manteau terrestre. Il apparait donc que la Terre s’est formée à partir d’un matériel suffisamment riche en hydrogène pour fournir la quasi-totalité de l’eau terrestre. Ces résultats montrent également qu’une grande partie de l’azote atmosphérique (gaz le plus abondant de l’atmosphère terrestre) pourrait aussi provenir des chondrites à enstatite, faisant de ces roches, analogues des constituants principaux de la Terre, les pourvoyeurs des éléments fondamentaux pour le développement de la vie sur Terre. La Terre a donc toujours été riche en eau et cette caractéristique est fondamentale au regard du développement de la vie sur notre planète.

**************************

Earth is the only planet of our Solar System with liquid water on its surface. This is a fundamental characteristic, as water certainly played a major role in the appearance and development of life on Earth. A great question remains though: where does this water come from? Indeed, the Earth’s building blocks are supposed to be dry, as they come from inner zones of the Solar System where temperatures have been too high for water to condense and be accreted with other solids during planet formation. It is commonly considered that water was delivered to Earth at the end of its formation by hydrated bodies such as comets or hydrated asteroids formed in the outer Solar System. Nonetheless, the water content of the Earth’s building blocks has never been precisely estimated. Yet, potential analogues of these building blocks are available on Earth: the meteorites from the enstatite chondrite group, that correspond to 2% of the known meteorites.

In this paper published in the Science review, we have determined the water concentration and composition of a series of enstatite chondrites. The coupling of two analytical techniques, the conventional mass spectrometry and the secondary ion mass spectrometry (SIMS), allowed them to precisely measure the low water contents of enstatite chondrites without being biased by terrestrial contamination. The results demonstrate that the enstatite chondrites contain enough water to deliver at the minimum 3 times the total amount of water of the Earth’s oceans and probably much more! To investigate the comparison between the Earth and the enstatite chondrites further, the authors traced water’s origin by measuring the hydrogen isotopic ratios. The isotopic ratio is a type of signature akin to DNA for a chemical element. We found the hydrogen isotopic composition of enstatite chondrites to be similar to the one of the water stored in the terrestrial mantle. It thus appears that the Earth might have been formed from a material that both contains enough water and possesses the right isotopic composition to explain almost all of the water present today. The paper also proposed that a large amount of the atmospheric nitrogen (the most abundant component of the Earth’s atmosphere) could also come from the enstatite chondrites. The Earth could thus have always been wet and this is of major importance for the development of life on our planet.

De nouvelles pistes pour comprendre l’origine de l’azote terrestre

Dans une étude expérimentale, menée par Célia Dalou (CRPG-CNRS) et parue cette semaine dans la revue PNAS, nous montrons que la composition isotopique de l’azote terrestre a évolué lors des stade d’évolution précoces de la Terre. L’azote terrestre, plus léger qu’actuellement mesurés dans les roches actuelles, aurait ainsi pu être hérité de matériaux type chondrites à enstatite.

 

Un océan sur Mars

Cette vidéo (en anglais) a été mise en ligne par la NASA après la publication du papier: Villanueva et al., 2015. Strong water isotopic anomalies in the martian atmosphere: Probing current and ancient reservoirs. Science, Vol. 348 no. 6231 pp. 218-221. DOI:10.1126/science.aaa3630. Vous trouverez ci-dessous, un petit résumé en français.

Mars est une planète rocheuse comme la Terre mais, aujourd’hui, sa surface ne contient que très peu d’eau. On la trouve principalement sous forme de glace aux pôles ou emprisonnée dans des minéraux hydratés. La quantité d’eau liquide anciennement présente sur la surface de Mars est inconnue.

A l’aide de télescopes terrestres, des chercheurs de laboratoires de la NASA ont mesuré la composition isotopique de l’hydrogène (c’est à dire l’abondance relative des deux isotopes deutérium D et hydrogène H) des molécules d’eau dans l’atmosphère de Mars au-dessus des calottes polaires. Ils utilisent ce rapport isotopique pour estimer la quantité d’eau qui a été perdue par évaporation dans l’espace depuis la formation de la planète. En effet, les molécules d’eau contenant du D (HDO) s’évaporent moins facilement que celles qui ne contiennent que du H (H2O). L’eau qui reste après évaporation va donc posséder un rapport D/H plus élevé que l’eau initiale. Supposant un rapport D/H initial similaire à celui de l’eau des minéraux de météorites martiennes*, les chercheurs ont évalué la quantité d’eau perdue pour obtenir le rapport actuel et estimé le temps nécessaire pour évaporer cette eau.

Cette étude a mis en évidence la présence de forts enrichissements en D dans les glaces d’eau polaire de Mars et a permis d’estimer la quantité d’eau initiale. D’après ces mesures, il semble que Mars ait eu, il y a 4 milliards d’années, un océan sur 20% de sa surface, une étendue plus grande que l’Océan Arctique sur Terre. 87% de cette eau s’est évaporée et les calottes polaires sont les résidus de cette évaporation.

Cette quantité d’eau est bien plus importante que ce qu’on supposait. Cela implique aussi que l’océan martien a mis plusieurs milliards d’années à s’évaporer. C’est une durée bien plus grande que le temps qu’il a fallut à la vie sur Terre pour apparaître. Comme la Terre, il semble que Mars a pu être un terrain très favorable pour l’apparition de la vie.

*Ces minéraux ont emprisonné de l’eau au moment où ils se sont formés, il y a environ 4,5 milliards d’années.