Nouvelle scientifique

La Terre pourrait avoir été riche en eau dès le départ / Earth may have always been wet

Piani L., Marrocchi Y. , Rigaudier T. , Vacher L.G. , Thomassin D., Marty B. (2020) Earth’s water may have been inherited from material similar to enstatite chondrite meteorites. Science, Vol. 369, Issue 6507, pp. 1110-1113. Full text available here.

EC-sans-fond

Morceau d’environ 10 cm de la chondrite à enstatite Sahara 97096 dans laquelle des concentrations d’eau de l’ordre de 0.5 % en poids sont mesurées. Si notre planète était formée uniquement de ce matériau, elle contiendrait jusqu’à 23 fois la quantité d’eau présente dans l’ensemble des océans. // Piece of the meteorite Sahara 97096 (about 10-cm long), an enstatite chondrite that contains about 0.5 weight % of water. If Earth formed entirely of this material, it would have received 23 times the total mass of water present in the Earth’s oceans. Sample from the National History Museum (Paris).

La Terre est la seule planète du système solaire à posséder de l’eau liquide à sa surface. Cette caractéristique est fondamentale, car cette eau a joué un rôle majeur dans l’apparition et le développement de la vie sur notre planète. Une grande question agite néanmoins la communauté scientifique : quelle est l’origine de l’eau sur Terre? En effet, les roches constitutives de la Terre sont supposées sèches car elles proviennent de zones internes du Système Solaire où régnaient des températures trop élevées pour que l’eau condense et s’agglomère aux autres solides sous forme de glace. L’hypothèse souvent évoquée est celle d’un apport tardif, après les premières étapes de formation de la Terre, par des petits corps hydratés tels que des comètes ou des astéroïdes carbonés. La quantité d’eau des roches constitutives de la Terre n’a néanmoins jamais été précisément estimée. Il existe pourtant des analogues disponibles sur Terre : ce sont les météorites du groupe des chondrites à enstatite correspondant à moins de 2% de l’ensemble des météorites.

Dans un article publié dans la revue Science, nous avons déterminé de façon précise les concentrations en eau des chondrites à enstatite. L’utilisation couplée de deux techniques analytiques, la spectrométrie de masse conventionnelle et la sonde ionique, a permis de montrer que l’on pouvait s’affranchir de la contamination terrestre et mesurer de façon fiable de faibles teneurs en eau comme celles mesurées dans les chondrites à enstatite. Les résultats obtenus montrent que les chondrites à enstatite contiennent suffisamment d’eau pour avoir apporté au minimum l’équivalent de trois fois la quantité totale d’hydrogène présent dans l’eau des océans terrestres et peut être beaucoup plus ! ! L’utilisation de rapport isotopique, véritable ADN des éléments chimiques, permet ensuite d’affiner la comparaison entre la Terre et les chondrites à enstatite. La composition isotopique en hydrogène des chondrites à enstatite est en parfait accord avec celle de l’eau stockée dans le manteau terrestre. Il apparait donc que la Terre s’est formée à partir d’un matériel suffisamment riche en hydrogène pour fournir la quasi-totalité de l’eau terrestre. Ces résultats montrent également qu’une grande partie de l’azote atmosphérique (gaz le plus abondant de l’atmosphère terrestre) pourrait aussi provenir des chondrites à enstatite, faisant de ces roches, analogues des constituants principaux de la Terre, les pourvoyeurs des éléments fondamentaux pour le développement de la vie sur Terre. La Terre a donc toujours été riche en eau et cette caractéristique est fondamentale au regard du développement de la vie sur notre planète.

**************************

Earth is the only planet of our Solar System with liquid water on its surface. This is a fundamental characteristic, as water certainly played a major role in the appearance and development of life on Earth. A great question remains though: where does this water come from? Indeed, the Earth’s building blocks are supposed to be dry, as they come from inner zones of the Solar System where temperatures have been too high for water to condense and be accreted with other solids during planet formation. It is commonly considered that water was delivered to Earth at the end of its formation by hydrated bodies such as comets or hydrated asteroids formed in the outer Solar System. Nonetheless, the water content of the Earth’s building blocks has never been precisely estimated. Yet, potential analogues of these building blocks are available on Earth: the meteorites from the enstatite chondrite group, that correspond to 2% of the known meteorites.

In this paper published in the Science review, we have determined the water concentration and composition of a series of enstatite chondrites. The coupling of two analytical techniques, the conventional mass spectrometry and the secondary ion mass spectrometry (SIMS), allowed them to precisely measure the low water contents of enstatite chondrites without being biased by terrestrial contamination. The results demonstrate that the enstatite chondrites contain enough water to deliver at the minimum 3 times the total amount of water of the Earth’s oceans and probably much more! To investigate the comparison between the Earth and the enstatite chondrites further, the authors traced water’s origin by measuring the hydrogen isotopic ratios. The isotopic ratio is a type of signature akin to DNA for a chemical element. We found the hydrogen isotopic composition of enstatite chondrites to be similar to the one of the water stored in the terrestrial mantle. It thus appears that the Earth might have been formed from a material that both contains enough water and possesses the right isotopic composition to explain almost all of the water present today. The paper also proposed that a large amount of the atmospheric nitrogen (the most abundant component of the Earth’s atmosphere) could also come from the enstatite chondrites. The Earth could thus have always been wet and this is of major importance for the development of life on our planet.

News & Views – The tumultuous childhood of the Solar System

Dans ce News & Views de la revue Nature Astronomy, nous présentons le récent papier de W. Fujiya et al. (2019)  sur les compositions isotopiques en carbone des carbonates de la chondrite Tagish Lake. Les fortes valeurs isotopiques (δ¹³C) mesurées pour les carbonates de cette chondrite carbonée unique semblent montrer qu’elle s’est formée loin du Soleil, au-delà de la limite de glace du CO2.

N&V_sketch_3

De nouvelles pistes pour comprendre l’origine de l’azote terrestre

Dans une étude expérimentale, menée par Célia Dalou (CRPG-CNRS) et parue cette semaine dans la revue PNAS, nous montrons que la composition isotopique de l’azote terrestre a évolué lors des stade d’évolution précoces de la Terre. L’azote terrestre, plus léger qu’actuellement mesurés dans les roches actuelles, aurait ainsi pu être hérité de matériaux type chondrites à enstatite.

 

Symposium 3S en images

Quelques photos du symposium 3S (Solar-System in Sapporo) qui s’est déroulé du 17 au 19 février à Rusutsu près de Sapporo. Il a réuni une cinquantaine de chercheurs venus pour présenter leur travaux en cosmochimie. Un grand merci à tous les participants!

Plus de photos sur la page facebook de 3S et détails du programme scientifique sur le site du symposium.

3s-group

3S-av-symp

Visite de l’institut des Sciences de basse température à l’Université d’Hokkaido avec Akira Kouchi, la veille du symposium.

3S-yoshi

Yoshi Yurimoto lance le symposium!

3S-poster

Discussions autour des posters.

3s-harold

Harold Connolly présente l’organisation de la mission spatiale OSIRIS-REx.

3S-Shogo

Shogo Tachibana fait un résumé de la première journée.

3s-moi

Je présente mes données de D/H dans les chondrites.

3S-discussion

Discussions dynamiques sur l’origine des enrichissements isotopiques de la matière organique des chondrites. 

3S-bar

Discussions supplémentaires autour d’un verre un peu plus tard dans la soirée.

3S-soiree

Et encore plus tard dans la soirée!

3S-ski

Une belle journée de ski à la suite de la conférence!

3S-ski2

Quelques skieurs du symposium sur les pistes.

3S-lab

Après la conférence, visite du laboratoire expérimental de Shogo Tachibana avec François-Régis Orthous-Daunay et Kelly Miller.

Hayabusa 2 vient de passer près de la Terre

Dans la nuit du 3 décembre 2015, un an après son lancement, la sonde Hayabusa 2 de l’agence spatiale japonaise (JAXA) s’est rapproché de la Terre à près de 3000 km d’altitude.

Hayabusa 2, Terre, decembre 2015, ONC-W2_20151203_EARTH

Ces images ont été prises par l’instrument embarqué ONC-W2.

Le but de ce passage réussi près de la Terre est de permettre à la sonde d’accélérer pour se rapprocher de sa cible: l’astéroïde géocroiseur Ryugu (162173 Ryugu). L’arrivée d’Hayabusa 2 près de Ryugu est prévue pour juillet 2018!

Visitez le site de la JAXA, pour plus d’info sur la mission Hayabusa 2 (en anglais).

Un océan sur Mars

Cette vidéo (en anglais) a été mise en ligne par la NASA après la publication du papier: Villanueva et al., 2015. Strong water isotopic anomalies in the martian atmosphere: Probing current and ancient reservoirs. Science, Vol. 348 no. 6231 pp. 218-221. DOI:10.1126/science.aaa3630. Vous trouverez ci-dessous, un petit résumé en français.

Mars est une planète rocheuse comme la Terre mais, aujourd’hui, sa surface ne contient que très peu d’eau. On la trouve principalement sous forme de glace aux pôles ou emprisonnée dans des minéraux hydratés. La quantité d’eau liquide anciennement présente sur la surface de Mars est inconnue.

A l’aide de télescopes terrestres, des chercheurs de laboratoires de la NASA ont mesuré la composition isotopique de l’hydrogène (c’est à dire l’abondance relative des deux isotopes deutérium D et hydrogène H) des molécules d’eau dans l’atmosphère de Mars au-dessus des calottes polaires. Ils utilisent ce rapport isotopique pour estimer la quantité d’eau qui a été perdue par évaporation dans l’espace depuis la formation de la planète. En effet, les molécules d’eau contenant du D (HDO) s’évaporent moins facilement que celles qui ne contiennent que du H (H2O). L’eau qui reste après évaporation va donc posséder un rapport D/H plus élevé que l’eau initiale. Supposant un rapport D/H initial similaire à celui de l’eau des minéraux de météorites martiennes*, les chercheurs ont évalué la quantité d’eau perdue pour obtenir le rapport actuel et estimé le temps nécessaire pour évaporer cette eau.

Cette étude a mis en évidence la présence de forts enrichissements en D dans les glaces d’eau polaire de Mars et a permis d’estimer la quantité d’eau initiale. D’après ces mesures, il semble que Mars ait eu, il y a 4 milliards d’années, un océan sur 20% de sa surface, une étendue plus grande que l’Océan Arctique sur Terre. 87% de cette eau s’est évaporée et les calottes polaires sont les résidus de cette évaporation.

Cette quantité d’eau est bien plus importante que ce qu’on supposait. Cela implique aussi que l’océan martien a mis plusieurs milliards d’années à s’évaporer. C’est une durée bien plus grande que le temps qu’il a fallut à la vie sur Terre pour apparaître. Comme la Terre, il semble que Mars a pu être un terrain très favorable pour l’apparition de la vie.

*Ces minéraux ont emprisonné de l’eau au moment où ils se sont formés, il y a environ 4,5 milliards d’années.

De surprenantes variations dans l’eau du système solaire primitif

Cet article a été publié en juillet 2015 dans la rubrique Zoom Science du site de l’IMPMC (Université Pierre et Marie Curie, Paris, France). Il fait suite à la publication de notre article (Piani et al., 2015) dans EPSL.

L’origine de l’eau sur Terre est une des grandes questions de la géochimie. Il est probable que l’eau des océans ait pu être apportée par des comètes ou des météorites provenant de la ceinture d’astéroïdes (chondrites). La signature isotopique de l’hydrogène, principal constituant de l’eau et quasi-absent dans la plupart des minéraux, est le moyen le plus couramment utilisé pour tracer l’origine de l’eau dans le système solaire. Les composants des chondrites, peu modifiés depuis leur formation, constituent de véritables témoins des conditions physico-chimiques qui régnaient dans le système solaire jeune, il y a environ 4.5 milliards d’années. Parmi ces composants, on trouve dans certaines chondrites des minéraux hydratés qui ont enregistré la signature isotopique de l’eau à partir de laquelle ils se sont formés. Cependant, dans les chondrites, ces minéraux hydratés sont très finement mélangés à un autre porteur de l’hydrogène : la matière organique. Il est donc très difficile de mesurer individuellement leur composition isotopique au sein de la roche. Dans cette étude, nous avons utilisé un nouveau protocole de mesure avec la sonde ionique NanoSIMS installée au Muséum National d’Histoire Naturelle à Paris pour estimer la contribution de chacune de ces phases à la composition isotopique de l’hydrogène dans les chondrites (détails du protocole dans Piani et al., 2012). Nous avons donc pu estimer localement, pour différents types de chondrites, qui de la matière organique ou des minéraux hydratés possède le plus fort rapport isotopique.

Nous avons mesuré de fortes différences selon les classes de chondrites (carbonées et ordinaires) en accord avec des études précédentes. De plus, dans la chondrite ordinaire Sé- markona, nous avons observé que la composition isotopique des minéraux hydratés est très hétérogène avec, par endroit, des enrichissements extrêmes en deutérium (l’isotope lourd de l’hydrogène) surpassant les valeurs jusqu’ici mesurées dans les chondrites (Fig. 1).

Fig1_Zoom-science

Fig. 1 Distribution du rapport isotopique D/H mesuré dans la matrice de la chondrite ordinaire Sémarkona. Dans cette image, deux zones micrométriques sont particulièrement riches en deutérium et correspondent à des minéraux hydratés.

Il est difficile de concevoir que de tels enrichissements et hétérogénéités puissent se former sur le corps parent astéroïdal. Ils suggèrent donc fortement la présence d’eau plus ou moins enrichie en deutérium dans le système solaire primitif. Cette eau aurait été accrétée sous forme de glace lors de la formation de l’astéroïde et aurait altéré très localement les silicates environnants, conservant ainsi son hétérogénéité isotopique.
La présence, dans le système solaire primitif, de zones où les grains de glace d’eau ne se sont pas homogénéisés est surprenante. Ceci indique qu’une partie de ces grains, qui pourrait-être d’origine interstellaire, a été conservée intacte jusqu’à leur accrétion. L’incorporation, en proportions variables, de ces grains de glace d’eau riches en deutérium pourrait être
à l’origine les variations de compositions isotopiques observées dans les comètes (Fig. 2), et notamment le fort rapport isotopique en faveur du deutérium mesuré récemment par la sonde Rosetta pour la comète 67P/Churyumov-Gerasimenko (Altwegg et al., 2014).

Fig2_Zoom-science

Fig. 2. Compositions isotopiques de l’hydrogène dans le système solaire. Figure modifiée d’après Hartogh et al. (2011). CI représente la valeur de l’eau des chondrites carbonées, les symboles noirs les valeurs mesurées dans les atmosphères des planètes Jupiter, Saturne, Uranus et Neptune. Les compositions isotopiques mesurées pour Sémarkona (bleu clair) couvrent toute la gamme de valeurs obtenues jusqu’ici pour la Terre, les météorites et les comètes.

Les résultats de cette étude apportent donc de nouvelles contraintes sur la distribution de l’eau dans le système solaire primitif. Ces contraintes permettront d’affiner les modèles de distribution et d’évolution de la matière dans le système solaire depuis le stade nébulaire (nuage de gaz et de poussière) jusqu’à la formation de la Terre et de ses océans.

 

Références

Altwegg, K., 2014. 67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio 1-6.
doi:10.1126/science.1261952 /

Hartogh, P., Lis, D.C., Bockelée-Morvan, D., de Val-Borro, M., Biver, N., Küppers, M., Emprechtinger, M., Bergin, E. a, Crovisier, J., Rengel, M., Moreno, R., Szutowicz, S., Blake, G., 2011. Ocean-like water in the Jupiter-family comet 103P/Hartley 2. Nature 478, 218–20. doi:10.1038/nature10519

Piani, L., Remusat, L., Robert, F., 2012. Determination of the H isotopic composition of individual components in fine-scale mixtures of organic matter and phyllosilicates with the nanoscale secondary ion mass spectrometry. Anal. Chem. 84, 10199–206. doi:10.1021/ac301099u